Part Number Hot Search : 
IN5257B LVC157 25PPM TTINY 74732 CM1962B 74VCX16 BCM5632
Product Description
Full Text Search
 

To Download IRF7835UPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 96080A
IRF7835UPBF
HEXFET(R) Power MOSFET
Applications l Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for Isolated DC-DC Converters in Networking Systems Benefits l Very Low Qrr l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Lead-Free
VDSS
30V
RDS(on) max
4.5m:@VGS = 10V
1 2 3 4
Qg
22nC
S S S G
8 7
A A D D D D
6 5
Top View
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C PD @TA = 70C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range
Max.
30 20 19 15 150 2.5 1.6 0.02 -55 to + 155
Units
V
c
A W W/C C
Thermal Resistance
RJL RJA
g Junction-to-Ambient fg
Junction-to-Drain Lead
Parameter
Typ.
--- ---
Max.
20 50
Units
C/W
Notes through are on page 9
www.irf.com
09/19/06
1
IRF7835UPBF
BVDSS VDSS/T J RDS(on) V GS(th) V GS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss
Static @ TJ = 25C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
30 --- --- --- 1.35 --- --- --- --- --- 81 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0.023 3.6 4.5 1.8 -6.0 --- --- --- --- --- 22 5.5 2.1 7.2 7.2 9.3 14 1.0 9.6 13 14 4.6 2960 610 270 --- --- 4.5 5.7 2.35 --- 1.0 150 100 -100 --- 33 --- --- --- --- --- --- 1.7 --- --- --- --- --- --- --- pF VGS = 0V VDS = 15V ns nC nC VDS = 15V VGS = 4.5V ID = 15A S nA V mV/C A V m
Conditions
VGS = 0V, ID = 250A VGS = 10V, ID = 19A VGS = 4.5V, ID
V/C Reference to 25C, ID = 1mA
e = 15A e
VDS = VGS, ID = 50A VDS = 24V, V GS = 0V VDS = 24V, V GS = 0V, TJ = 125C VGS = 20V VGS = -20V VDS = 15V, ID = 15A
See Fig. 16 VDS = 16V, V GS = 0V VDD = 15V, V GS = 4.5V ID = 15A Clamped Inductive Load
= 1.0MHz
Avalanche Characteristics
E AS IAR Parameter Single Pulse Avalanche Energy Avalanche Current
d
Typ. --- ---
Max. 240 15
Units mJ A
Diode Characteristics
Parameter
IS ISM V SD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time --- --- --- --- --- --- 16 21 150 1.0 24 32 V ns nC
Min. Typ. Max. Units
--- --- 3.1 A
Conditions
MOSFET symbol showing the integral reverse
G S D
p-n junction diode. TJ = 25C, IS = 15A, VGS = 0V di/dt = 320A/s
e
TJ = 25C, IF = 15A, V DD = 15V
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRF7835UPBF
1000
TOP
1000
ID, Drain-to-Source Current (A)
100
ID, Drain-to-Source Current (A)
10
BOTTOM
VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
TOP
100
BOTTOM
VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
1
10
0.1
2.3V
0.01 0.1 1
60s PULSE WIDTH Tj = 25C
1 10 100 0.1
2.3V
1
60s PULSE WIDTH Tj = 150C
10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
100
TJ = 150C
10
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
ID = 15A VGS = 10V
1.5
1
TJ = 25C
1.0
0.1
VDS = 15V
60s PULSE WIDTH
0.01 1.0 2.0 3.0 4.0 5.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7835UPBF
100000
VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
12 10 8 6 4 2 0
ID= 15A VDS= 25V VDS= 16V VDS= 7.6V
C, Capacitance (pF)
10000
Ciss
1000
Coss Crss
100 1 10 100
0
10
20
30
40
50
60
VDS, Drain-to-Source Voltage (V)
Qg, Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
1000
ISD , Reverse Drain Current (A)
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA LIMITED BY R DS(on) 1msec 100sec
100
100
TJ = 150C
10
10 10msec 1
1
TJ = 25C VGS = 0V
0.1
TA = 25C Tj = 150C Single Pulse 0.1 1
100msec
0.1 0.2 0.4 0.6 0.8 1.0 1.2
0.01 0.01
10
100
VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7835UPBF
20
2.2
VGS(th) Gate threshold Voltage (V)
2.0 1.8 1.6 1.4 1.2 1.0 0.8
16
ID , Drain Current (A)
12
ID = 50A
8
4
0 25 50 75 100 125 150
-75
-50
-25
0
25
50
75
100
125
150
TC, CaseTemperature (C)
TJ , Temperature ( C )
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10. Threshold Voltage Vs. Temperature
100
D = 0.50
10
Thermal Response ( ZthJA )
1
0.20 0.10 0.05 0.02 0.01
J R1 R1 J 1 2 R2 R2 R3 R3 C 1 2 3 3
0.1
Ri (C/W)
(sec)
0.01
Ci= i/Ri Ci= i/Ri
5.599447 0.010553 27.35936 1.1984 17.0458 44.7
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc
0.001 0.01 0.1 1 10 100
0.0001 1E-006 1E-005 0.0001
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7835UPBF
( RDS (on), Drain-to -Source On Resistance m)
16
ID = 15A
12
EAS, Single Pulse Avalanche Energy (mJ)
500
400
ID 1.4A 1.8A BOTTOM 15A
TOP
300
8
TJ = 125C
200
4
TJ = 25C
0 2.0 4.0 6.0 8.0 10.0
100
0 25 50 75 100 125 150
VGS, Gate-to-Source Voltage (V)
Starting TJ , Junction Temperature (C)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01
I AS
Fig 14a. Unclamped Inductive Test Circuit
LD VDS
Fig 14b. Unclamped Inductive Waveforms
+
VDD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1%
90%
VDS
10%
VGS
td(on) tr td(off) tf
Fig 15a. Switching Time Test Circuit
Fig 15b. Switching Time Waveforms
6
www.irf.com
IRF7835UPBF
Current Regulator Same Type as D.U.T.
Id Vds Vgs
50K 12V .2F .3F
D.U.T. VGS
3mA
+ V - DS
Vgs(th)
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Qgd
Qgodr
Fig 16a. Gate Charge Test Circuit
Fig 16b. Gate Charge Waveform
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
www.irf.com
7
IRF7835UPBF
SO-8 Package Outline
Dimensions are shown in millimeters (inches)
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H
1
2
3
4
.050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e
K L y
e1
A
K x 45 C 0.10 [.004] y 8X c
8X b 0.25 [.010]
A1 CAB
8X L 7
NOT ES : 1. DIMENS IONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050] 6.46 [.255]
F OOTPRINT 8X 0.72 [.028]
8X 1.78 [.070]
SO-8 Part Marking
8
www.irf.com
IRF7835UPBF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 2.1mH, RG = 25, IAS = 15A. Pulse width 400s; duty cycle 2%. When mounted on 1 inch square copper board. R is measured at TJ of approximately 90C.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2006
www.irf.com
9


▲Up To Search▲   

 
Price & Availability of IRF7835UPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X